時(shí)間:2018-11-14
作者:易科泰
點(diǎn)擊量:
簡(jiǎn)介:
LCi-T 便攜式光合儀是最小巧、輕便的便攜式光合作用測(cè)定儀,用以測(cè)量植物葉片的光合速率、蒸騰速率、氣孔導(dǎo)度等與植物光合作用相關(guān)的參數(shù)。儀器應(yīng)用IRGA(紅外氣體分析)原理,精密測(cè)量葉片表面CO2濃度及水分的變化情況來考察葉片與植物光合作用相關(guān)的參數(shù)。特殊的設(shè)計(jì)可在高濕度、高塵埃環(huán)境使用。既可在研究中使用,又是很好的教學(xué)儀器。
上圖左為全套光合儀主機(jī)配件及便攜箱等,上圖中為光合儀主機(jī)和手柄,上圖右為操作人員進(jìn)行野外實(shí)驗(yàn)
應(yīng)用領(lǐng)域
技術(shù)特點(diǎn)
上圖為英國劍橋大學(xué)植物科學(xué)系M. Davey博士在南極洲對(duì)藻類光合作用研究時(shí)的工作圖片,因LC系列光合儀輕便小巧,堅(jiān)固耐用,續(xù)航持久等特點(diǎn)被列為首選。
技術(shù)指標(biāo)
1)測(cè)量參數(shù)包括F0、Ft、Fm、Fm’、QY_Ln、QY_Dn、NPQ、Qp、Rfd、RAR、Area、M0、Sm、PI、ABS/RC等50多個(gè)葉綠素?zé)晒鈪?shù),及3種給光程序的光響應(yīng)曲線、2種熒光淬滅曲線、OJIP曲線等
2)高時(shí)間分辨率,可達(dá)10萬次每秒,自動(dòng)繪出OJIP曲線并給出26個(gè)OJIP-test測(cè)量參數(shù)包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、M0、Area、Fix Area、Sm、Ss、N、Phi_P0、Psi_0、Phi_E0、Phi-D0、Phi_Pav、PI_Abs、ABS/RC、TR0/RC、ET0/RC、DI0/RC等
1)寬葉葉室:長(zhǎng)×寬為2.5×2.5cm,適用于闊葉及大多數(shù)葉片類型
2)窄葉葉室:長(zhǎng)×寬為5.8×1cm,適用寬度小于1cm的條形葉
3)針葉葉室:長(zhǎng)約69mm,直徑47mm,適用于簇狀針葉(白光光源)
4)小型葉葉室:葉室直徑為16.5mm,測(cè)量面積2.16cm2
5)土壤呼吸/小型植物室:測(cè)量測(cè)量土壤呼吸,或者高度低于55mm的整株草本植物光合作用,底面直徑為11cm
6)多功能測(cè)量室:長(zhǎng)×寬×高為15×15×7cm,分為上下兩部分,上部測(cè)量小型植物光合作用,下部分測(cè)量土壤呼吸
7)果實(shí)測(cè)量室:上下兩部分組成,上部透明,下部為金屬,可測(cè)量果實(shí)最大直徑為11cm,最大高度為11.5cm
8)冠層測(cè)量室:底面直徑12.7cm,高12.2cm,適用于地表冠層
9)熒光儀聯(lián)用適配器:適用于連接多種葉綠素?zé)晒鈨x
上圖從左到右依次為針葉室、果實(shí)測(cè)量室、土壤呼吸室、多功能測(cè)量室、冠層室
典型應(yīng)用
Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416
本文研究了Rhododendron ferrugineum(高山玫瑰杜鵑,杜鵑屬模式種)凈光合能力與葉片壽命的關(guān)系,發(fā)現(xiàn)有更多較老葉片的種群其光合能力更強(qiáng)(圖中深色區(qū)域?yàn)橐荒耆~片和二年葉片)。
產(chǎn)地:英國
選配技術(shù)方案
參考文獻(xiàn)(僅列出部分代表性文獻(xiàn))
1. Ahmad, I. Jabeen, N. Ziaf, J.M. Dole, M.A.S. Khan, M.A.. Bakhtavar (2017) . Macronutrient application affects morphological, physiological, and seed yield attributes of Calendula officinalis L. Canadian Journal of Plant Science, 2017, 97:906-916, https://doi.org/10.1139/cjps-2016-0301.
2. Elansary, H.O. Acta Physiol Plant (2017) . Green roof Petunia, Ageratum, and Mentha responses to water stress, seaweeds, and trinexapac-ethyl treatments J Acta Physiologiae Plantarum, 39,739: 145. doi:10.1007/s11738-017-2444-3.
3. Lee T.Y., et al. (2017) . Physiological responses of Populus sibirica to different irrigation regimes for reforestation in arid area. South African Journal of Botany, Volume 112, September 2017, Pages 329-335, ISSN0254-6299.
4. Magalhaes ID, Lyra GB, Souza JL, Teodora I, Cavalcante CA, Ferreira RA and Souza RC (2017). Physiology and Grain Yield of Common Beans under Evapotranspirated Water Reposition Levels. Irrigat Drainage Sys Eng 2017, 6:1 DOI: 10.4172/2168-9768.1000183.
5. Monteiro, M.V., Blanu?a, T., Verhoef, A., Richardson, M., Hadley, P., Cameron, R.W.F. (2017) . Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential, Energy and Buildings, Available online 7 Feb 2017, http://dx.doi.org/10.1016/j.enbuild.2017.02.011.
6. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. Haesaert G. (2017). Yield Performance, Carbon Assimilation and Spectral Response of Triticale to Water Stress. Experimental Agriculture, Vol.52, Issue 1.
7. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. (2017) . Carbon Isotope Discrimination as a Surrogate of Grain Yield in Drought Stressed Triticale. In: Leal Filho
8. Pourghayoumia M. Bakhshi, D. Rahemi M., Kamgar-Haghighic A.A., Aalamid A. (2017) . The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance” Scientia Horticulturae. Volume 217, 15 March 2017, Pages 164-172.
9. Sakhonwasse S., Tummachai K., Nimnoy, N. (2017). Influences of LED Light Intensity on Stomatal Behavior of Three Petunia Cultivars Grown in a Semi-closed System” Environmental Control Biology, 55 (2), 93-103.
10. Yasin, N.A., Khan, W.U., Ahmad, S.R. et al. (2017). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environ Sci Pollut Res (2017) https://doi.org/10.1007/s11356-017-0761-0.
11. Chandry R., and Hoduck, K. (2018) . Phytoremediatino and Physiological Effects of Mixed Heavy Metals on Poplar Hybrids. IntechOpen https://cdn.intechopen.com/pdfs/60715.pdf.
12. Ouledali, A., Ennajh, M., Ferrandino, A., Khemira, H., Schubert, A., Secchi, F. (2018) . Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants” South African Journal of Botany Vol. 121, March 2019, 152-158.
13. Tahjib-Ul-Arif, M., Siddiqui, M.N., Sohag, A.A.M. et al. J Plant Growth Regul (2018) . Salicylic Acid-Mediated Enhancement of Photosynthesis Attributes and Antioxidant Capacity. Contributes to Yield Improvement of Maize Plants Under Salt Stress”.
14. Qiu, K., Xie, Y., Xu, D. et al. Braz. J. Bot (2018) . Photosynthesis-related properties are affected by desertification reversal and associated with soil N and P availability”.
15. W., Belay S., Kalangu J., Menas W., Munishi P., Musiyiwa K. . Climate Change Adaptation in Africa. Climate Change Management. Springer, Cham.
16. Mujahid Ali1, Choudhary Muhammad Ayyub, Muhammad Amjad and Riaz Ahmad. (2019). Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress. Pak. J. Agri. Sci., Vol. 56(1), 53-61; 2019 DOI: 10.21162/PAKJAS/19.7519